Two blocks of mass M and m are connected by a string passing over a pulley. The pulley has radius R and moment of inertial. The string does not slip and the system is released from rest. Find the translational speeds of the blocks after the block 1 (mass M) descends through a distance h. Find the angular speed of the pulley at this time.
\rightarrow pulley rotates about axle tan neglect friction in axle Cblc axle sm
so system related \Rightarrow energy is conserved Energy Conserved

$$
\begin{aligned}
& K E_{i}+A_{i}=K E_{f}+P E_{f} \\
& \text { setasopt } \\
& O+O=\frac{1}{2} M V_{f}^{2}+\frac{1}{2} m v_{f}^{2}+\frac{1}{2} I w_{f}^{2}+M g h-m g h \\
& \frac{1}{2} M V_{f}^{2}+\frac{1}{2} m v_{f}^{2}+\frac{1}{2} I \frac{V_{f}^{2}}{R^{2}}=m g h-M g h \\
& \frac{1}{2}\left(M+m+I / R^{2}\right) V_{f}^{2}=m g h-M g h \\
& V_{f}^{2}=\frac{2(m-M) g h}{M+m+I / R^{2}} \\
& V F=\frac{2(m-M) g h}{M+m+I / R^{2}} \\
& \omega f=\frac{V f}{R}=\frac{1}{R} \frac{2(m-M) g h}{M+m+I / R^{2}}
\end{aligned}
$$

