Conservation of Mechanical Energy

A rollercoaster has a mass of 500 kg . At the top of a 14 m hill, it has a velocity of $2 \mathrm{~m} / \mathrm{s}$. Find its velocity at the bottom m .

$$
M E_{i}=m E_{f}
$$

$$
\begin{aligned}
& m g h i+\frac{1}{2} m v_{i}^{2}=\frac{1}{2} m v_{f}^{2} \\
& 500.9 .8 \cdot 14+\frac{1}{2}(500)\left(z^{2}\right)=\frac{1}{2} \cdot 500 v_{f}^{2} \\
& 68,600+1000=250 \mathrm{vf}^{2} \\
& 69.600=250 v_{f}^{2} \\
& 278.4=v_{f}^{2} \\
& v_{f}=16.7 \mathrm{mls}
\end{aligned}
$$

A spring is pulled back 20 cm . Its spring constant is $50 \mathrm{~N} / \mathrm{m}$ and its mass is 30 g .

1. How fast is it when you just let it go?
2. How high will it rise?

$$
\begin{aligned}
\text { PER } & =k \in f \\
\frac{1}{2} k x^{2} & =\frac{1}{2} m v^{2} \\
\frac{1}{2} \cdot 50 \cdot .2^{2} & =\frac{1}{2} \cdot 0.03 \cdot v^{2} f \\
1 & =.015 v^{2} \quad \\
6.7 & =v f^{2} \quad V_{f}=8.2 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

$$
\text { PEe }=\text { PEgf }
$$

$$
\begin{aligned}
& \frac{1}{2} k x^{2}=\text { might } \\
& \frac{1}{2} \cdot 50 \cdot 2^{2}=0.03 \cdot 9.9 \cdot \mathrm{hs}
\end{aligned}
$$

$$
1=0.294 \cdot h f
$$

$$
h_{f}=3.4 \mathrm{~m}
$$

$$
\begin{aligned}
& \text { R gi }=K E_{f} \\
& m g h_{i}=\frac{1}{2} m V f^{2} \\
& 2 \cdot 9.8 \cdot 0.36=\frac{1}{2} \cdot 2 \cdot v_{f}^{2} \\
& 7.09=v f^{2}=2.7 \mathrm{mls}
\end{aligned}
$$

$$
2=2 \cos 35+h
$$

$$
n=2-2 \cos 35
$$

$$
\begin{gathered}
M E_{i}=M E_{F} \\
P E_{g i}+P E_{0}+K E_{i}=P E_{0} f+P E_{2 f f}+K E F
\end{gathered}
$$

$$
P E_{g i}+K E_{i}=K E F
$$

$$
m g h i+\frac{1}{2} m v i^{2}=\frac{1}{2} m v_{f}^{2}
$$

$$
x\left(\text { ghi }+\frac{1}{2} v_{i}^{2}\right)=w_{2}\left(\frac{1}{2} v_{f}^{2}\right)
$$

$$
g h i+\frac{1}{2} v i^{2}=\frac{1}{2} v f^{2}
$$

$$
\begin{aligned}
& 9.8 \cdot 1.2+\frac{1}{2} \cdot 3^{2}=\frac{1}{2} v_{s}^{2} \\
& 11.76+4.4 v^{4}=\frac{1}{2} v 5^{2}
\end{aligned}
$$

$$
\begin{aligned}
& 10.260 \\
& 32.52=v f^{2}
\end{aligned}
$$

$$
v f=5.7 \mathrm{~m} / \mathrm{s}
$$

