## Conservation of Momentum Examples

## Example - Stick and Disk Collision

- A disk of mass $M$ traveling at $v$ strikes a stick of mass $M / 2$ of length $L$ lying flat on frictionless ice. The disk strikes at the endpoint of the stick, $\mathrm{L} / 2$ from the center. Assume the collision is elastic and the disk does not deviate from its line of motion. Find the translational speed of the disk, stick, and angular speed of the stick after the collision.


## What we expect

- The disk keeps moving in the same direction but at a slower speed
- The stick has both translational and rotational motion


## Equations to use

- Momentum and Angular momentum (no friction, system isolated)
- Elastic collision means KE is conserved

Three unknowns - speed of disk, speed of stick, angular speed of stick - so three equations

## Conservation of Momentum

$p_{i}=p f$
$m_{d} V_{d i}=m_{d} V_{d f}+m_{s} V_{s}$
$m_{d}\left(V_{d i}-V_{d f}\right)=m_{s} V_{s}$
Conservation of Angular momentum
$L_{i}=L_{f}$
$I \omega=I \omega$
For the disk $\rightarrow$ itis like a pt mass
$I=M R^{2}$
$I \omega=M R^{2} \omega=M R^{2} v / R=M U R$

- MVdi $R=-M V a f R+I \omega$

T negative because ofdirection of motion
$-M R\left(V d i-V_{d f}\right)=I \omega$
conservation of $K E$
$K E_{d t i}=K E_{d t f}+K E_{s t f}+K E_{s r f}$ $\frac{1}{2} m_{d} V_{d i}{ }^{2}=\frac{1}{2} m d V d{ }^{2}+\frac{1}{2} m_{s} V_{s t}{ }^{2}+\frac{1}{2} I \omega^{2}$ $m_{d}\left(v d i^{2}-v d{ }^{2}\right)=m_{s} V_{s}{ }^{2}+I w^{2}$
$m_{d}\left(v_{d i}+v_{d f}\right)\left(v_{d i}-v_{d f}\right)=m_{s} v_{s}{ }^{2}+I \omega^{2}$
$m_{d}\left(v_{d i}-v_{d f}\right)=m_{s} v_{s}$
$\rightarrow$ multiply by $r$
$\operatorname{rmd}\left(V d_{i}-V d f\right)=r_{m s} V_{s}$
$(-r m(V d i-V d f)=I \omega)$

$$
\begin{aligned}
& \cdot(\cdot(-r m(v d i-v d f)=I \omega) \\
& \sigma=I \omega+r m_{s} V_{s} \\
& \omega=-\frac{r m_{s} v_{s}}{I} \\
& \text { \#nd (vdi+vdf)(vdi-vdf)}=\frac{m_{s} v_{s}^{2}+I w^{2}}{m s v_{s}} \\
& V d i+V d f=V_{s}+\frac{I \omega^{2}}{m_{s} V_{s}} \\
& V_{d i}+V_{d f}=V_{s}+\frac{\left(-\frac{-r m s V_{s}}{I}\right)^{2}}{m_{s} V_{s}} \\
& V d i+V d f=V_{s}+\frac{r^{2} m s V_{s}}{I} \\
& V d i+V d f=V_{s}\left(1+\frac{r^{2} m}{I}\right)^{I} \\
& V_{d i}+\left(v_{d i}-\frac{m_{c}}{m_{d}} V_{s}\right)=V_{s}\left(1+\frac{r^{2} m_{s}}{I}\right) \\
& V_{s}=\frac{2 v a i}{1+\left(m_{s} / m a\right)+r^{2} m_{s} / I}=\frac{2 v d i}{1+M / 2 / M+1 / 3}=\frac{2 v d i}{1+1 / 2}+1 / 3= \\
& \text { Frod }=1 / 12 \mathrm{~ms}(\mathrm{~m})^{2} \\
& =\frac{1}{12} \mathrm{~ms}\left(4 R^{2}\right) \\
& =1 / 3 m s R^{2} \\
& =\frac{2 v d i}{\frac{11}{6}}=\frac{12 v_{d i}}{11} \\
& \omega=-\frac{r m_{\text {sVs }}}{I}=\frac{-\frac{\mu}{2}\left(\frac{12 v \text { di }}{11}\right)}{1 / 3 \frac{m}{2} R^{2}} \\
& =\frac{12 v d i}{11 R} 3=\frac{36 v d i}{114 / 2}=\frac{72 v d i}{11 L} \\
& V_{d f}=V_{d i}-\frac{m_{s}}{m d} V_{s}=V_{d i}-\frac{m / 2}{m}\left(\frac{12 V d i}{11}\right) \\
& =V_{d i}-1 / 2\left(\frac{12 v_{d i}}{11}\right) \\
& =V d i-\frac{6}{11} V d i \\
& =5 / 11 v d i
\end{aligned}
$$

