Conservative and Nonconservative forces
Wednesday, November 6, 2013 1:09 PM

A rollercoaster has a mass of 500 kg and is at the top of a 15 m tall hill. If it has a velocity of $2 \mathrm{~m} / \mathrm{s}$ at the top of the hill, what is its velocity at the bottom of the hill? (Assume no friction)

Now suppose we have a force of friction of 45 N per m . The rollercoaster travels a total distance of 50 m as it goes down the hill. Find the velocity as it travels down the hill

$$
\begin{aligned}
& F_{f}=45 \mathrm{~N} \\
& x=50 \mathrm{~m} \\
& w_{f}=F_{f} \cdot x=45.50=2250 \mathrm{~J}
\end{aligned}
$$

Elf: Eafter

$$
P E_{g_{i}}+K E_{i}=k E_{f}+w_{f}
$$

$$
W_{n c}=M E f-M E i
$$

$$
\begin{aligned}
& m g h i+\frac{1}{2} m v_{e}^{2}=\frac{1}{2 m u f^{2}+F_{f} \cdot x} \\
& 73,500+1000=250 v_{f}^{2}+2250 \\
& 74,500=250 \mathrm{vf}^{2}+2250 \\
& 727,50=250 u f^{2} \\
& 289=v f^{2} \\
& v f=17 \mathrm{mls}
\end{aligned}
$$

$$
\begin{aligned}
& M E_{i}=M E_{F} \\
& P E_{a_{i}}+P E_{E_{i}}+K E_{i}=P E_{g F F}+P_{E_{2 f}}+K E F \\
& P_{E i}+K E i=K E F \\
& m \text { phi }+\frac{1}{2} m v_{i}^{2}=\frac{1}{2 m v_{f}^{2}} \\
& 500 \cdot 9 \cdot 8 \cdot 15+\frac{1}{2} \cdot 500 \cdot 2^{2}=\frac{1}{2} \cdot 500 \cdot 4 p^{2} \\
& 73,500+1000=250 \mathrm{vf}^{2} \\
& 74,500=250 \mathrm{uf}^{2} \\
& 298=v p^{2} \\
& 17.3 \mathrm{~m} / \mathrm{s}=\mathrm{vf}
\end{aligned}
$$

A 5 kg brick slides down a 3 m long ramp that is titled to a 40 degree angle above the horizontal. The coefficient of friction is .2 . What is the brick's velocity at the bottom of the ramp?

$$
\begin{aligned}
& \text { Atstart } \\
& \hline \text { PEgii }=m g h_{i} \\
&=5.9 .8 .1 .93 \\
&=94.5 \mathrm{~J}
\end{aligned}
$$

$$
h_{i}=3 \cdot \sin 40=1.93 \mathrm{~m}
$$

Wfriction

$$
\begin{aligned}
& F_{N}=F_{1}=F_{g} \cos \theta=m g \cos \theta=5.9 .8 \cdot \cos 40 \\
& F_{f}=\mu F_{N}=0.2 \cdot 37.5=7.5 \mathrm{~N} \\
& W_{f_{r i c}}=\bar{r}_{f} \cdot x=7.5 .3=22.5 \mathrm{~J}
\end{aligned}
$$

$$
\begin{aligned}
& E_{\text {bfF }}=\text { Eater } \\
& P G g i=K E+w: \\
& 94.5=K E+22.5 \\
& 72=K E \\
& 72=\frac{1}{2} m v^{2} \\
& 72=\frac{1}{2} \cdot 5 v^{2}=2.5 v^{2} \\
& 28.8=v^{2} \quad v=5.37 \mathrm{mls}
\end{aligned}
$$

$$
\begin{aligned}
& \omega_{n c}=M E_{f}-m E_{i} \\
& \omega_{n c}=K E_{f}-P E_{i} \\
& -22.5=K E-94.5 \\
& 72=K E
\end{aligned}
$$

Wee will be negative because resists motion slows thins down

