Law of Universal Gravitation

Ex: Calculate the "attraction" between 2 students

To solve: estimate mass and distance

Ex: Find gravitational attraction of a 100 kg man on the surface of the earth

$$
\begin{aligned}
& \begin{aligned}
& F=\frac{G m_{1} m_{2}}{r^{2}}=\frac{G m_{e} \cdot m_{m}}{r_{m}}=6.38 \times 106 \mathrm{mg} \\
& m_{m}=100 \mathrm{~kg} \\
& \begin{aligned}
& =\frac{6.67 \times 10^{-11} .5 .98 .10^{24} \cdot 100}{\left(6.38 \times 10^{6}\right)^{2}} \\
& =980 \mathrm{~N}
\end{aligned}
\end{aligned} . \begin{array}{l} 
\\
\end{array}
\end{aligned}
$$

Find the value of $g$ on Mars

$$
\begin{aligned}
& \text { Find the value of g on Mars } \\
& m_{\text {mars }}=6.42 \times 10^{23} \mathrm{~kg} \quad 3 \quad \mathrm{p.223} \\
& r_{\text {mars }}=3.37 \times 10^{60} \mathrm{~m} \\
& g=? \\
& F=\operatorname{sag} \quad F=\frac{G \Delta x_{1} m_{2}}{r^{2}} \\
& g=G m_{2} \quad \text { ain. }
\end{aligned}
$$

$$
g=\frac{G m_{2}}{r^{2}}=\frac{G m_{m}}{r_{m^{2}}}=\frac{6.67 \times 10^{-11} \cdot 6.42 \times 10^{23}}{\left(3.37 \times 10^{0}\right)^{2}}=3.77 \mathrm{~m} / \mathrm{s}^{2}
$$

