- A merry go round of mass M and radius R rotates freely about a frictionless vertical axle. A student with mass m walks from the rim of the disk to the center. If the angular speed of the system is w when the student is at the rim, what is the angular speed when the student is halfway to the center ($R / 2$)?

Initial moment of Inertia I_{i}

$$
\begin{aligned}
I_{i} & =I_{m i}+I_{s i} \\
& =1 / 2 M R^{2}+m R^{2}
\end{aligned}
$$

rotating point mass disk

$$
\begin{aligned}
I f & =I_{m f}+I_{s f} \\
& =1 / 2 M R^{2}+m r^{2}
\end{aligned}
$$

Angular Momentum is conserved

$$
\begin{aligned}
& \text { Ii } w i=I f w_{f} \\
& \left(1 / 2 M R^{2}+m R^{2}\right) w_{i}=\left(1 / 2 M R^{2}+m r^{2}\right) w f \\
& w f=\frac{\left(1 / 2 M R^{2}+m R^{2}\right) \omega_{i}}{\left(1 / 2 M R^{2}+m(R / 2)^{2}\right)}
\end{aligned}
$$

