Power Calculations

1. A car is going down a freeway at $40 \mathrm{~m} / \mathrm{s}$. It requires 200 N of force to maintain its speed. What is its power?
2. A person is walking up a flight of stairs at a constant velocity. The stairs are 4 m high. IF the mass is 60 kg and the time is 4 s , find the power in W and hp .

$$
\begin{aligned}
& \Delta E^{\Delta P E} \frac{P_{g} y}{t}=\frac{P E_{f}-P E}{t}=\frac{P E F}{t}=\frac{\mathrm{mgh}}{\mathrm{t}} \\
& \\
& =\frac{60.9 .8 .4}{4}=588 \mathrm{~W}
\end{aligned}
$$

$$
588 \mathrm{~W}\left|\frac{\mathrm{he}}{740 \mathrm{~W}}\right|=0.788 \mathrm{hp}
$$

3. For a 5 hp motor, how much work can be done in 3 minutes?

$$
\begin{aligned}
P & =w / t \\
W & =P \cdot t \\
& =3730.180 \\
& =671400.1
\end{aligned}
$$

4. A car with a mass of 1000 kg accelerates from $20 \mathrm{~m} / \mathrm{s}$ to $40 \mathrm{~m} / \mathrm{s}$ in 3 s . Find the power.
$\triangle k E$

$$
\begin{aligned}
& P=\frac{\Delta K E}{t}=\frac{\frac{1}{2} m v^{2}-\frac{1}{2} m v_{i}^{2}}{t}=\frac{\frac{1}{2} \cdot 100040^{2}-\frac{1}{2} \cdot 1000 \cdot 20^{2}}{3} \\
&=\frac{800000-200,000}{3}=\frac{600,000}{3}=200,000 \mathrm{~W} \\
& 200,000 \mathrm{lv}\left|\frac{1 \mathrm{hp}}{746}\right|=268 \mathrm{hp}
\end{aligned}
$$

