Rotational Motion

A wheel starts from rest and turns through 56 radians at an angular acceleration of $3.5 \mathrm{rad} / \mathrm{s}^{\wedge} 2$. What is

- The time required
- The final angular velocity in rad/sec

$$
\begin{array}{ll}
v=0 & x=v_{i t+}+\frac{2 a}{} t^{2} \\
x=56 & 6=\frac{1}{2} \cdot 3.5 \cdot t^{2} \\
a=3.5 & 56=1.75 t^{2} \\
t=? & 32=t^{2} \quad t \approx 5.665
\end{array}
$$

Equations of constant acceleration

$$
\begin{aligned}
& v_{f}=v_{v}+a t \\
& v_{f}^{2}=v_{i}^{2}+2 a x \\
& x=v_{i} t+\frac{1}{2} a t^{2} \\
& x=\frac{1}{2}\left(v f+v_{i}\right) t
\end{aligned}
$$

$$
\begin{aligned}
& w_{k}=? \\
& w^{2}=v^{2}+2 a x \\
& =0^{2}+2.3 .5 .56 \\
& =392 \\
& v=\sqrt{392}=19.8 \mathrm{rad} / \mathrm{s}
\end{aligned}
$$

Rotational Motion

$$
\begin{aligned}
& w_{r}=w_{i}+\alpha t \\
& w_{i}^{2}=w_{i}^{2}+2 d \theta \\
& \theta=w_{i} t+\frac{1}{2} \alpha t^{2} \\
& \theta=\frac{1}{2}\left(w_{p}+w_{i}\right) t
\end{aligned}
$$

$x \rightarrow \theta$ angwar displacement
$V i \rightarrow w_{i}$ angular initial velocity
$\begin{array}{ll}V f \\ \\ & \rightarrow w_{f}\end{array}$ angular final velocity angular acceleration time same

Linear vs. Angular
$S=r \theta$

$$
\begin{aligned}
& s / t=\frac{r \theta}{t} \\
& v=r \omega \\
& \frac{v}{t}=\frac{r \omega}{t}
\end{aligned}
$$

in rad
$S=r \theta$
$v=r \omega$
$a=r \alpha$ must be in rad

$$
\begin{array}{ll}
v=r \omega \\
\frac{v}{t}=\frac{r \omega}{t} \\
a=r \alpha
\end{array} \quad \begin{aligned}
& S=r \theta \\
& v=r \omega \\
& a=r d \\
& \text { must be in rad }
\end{aligned}
$$

