Torque Introduction

Example
A 20 N force is applied to a door at a location 1.2 m away from a hinge at an angle of 42 degrees.

$$
\begin{aligned}
T & =F \times \sin \theta \\
& =20 \cdot 1.2 \cdot \sin 42 \pm 16 \mathrm{~N}-\mathrm{m}
\end{aligned}
$$

Is our answer positive or negative?
t = counterclockwise
$-=$ clockwise $+16 \mathrm{~N}-\mathrm{m}$

Find the torque at A and B (they will be different)

For something like this, it is important to remember that force and displacement need to be perpendicular to each other so when calculating. . .

Words of warning
Pay attention to x and y components carefully as well as direction of rotation

How to tell direction of rotation - think about pushing a ruler

The weight of the meter stick can be approximated at the center of mass
Where is the center of mass? Balance the meterstick on your finger

$$
\text { I egn } \rightarrow \text { careful where we pick }
$$

$$
\begin{aligned}
& \sum \Psi_{\text {fulcrum }}=\Psi_{1}+\Psi_{2}+\Psi_{3}+\Psi_{4}=0 \\
& F \cdot x_{1} \quad F_{f} \cdot x_{2} F_{\cdot x_{3}} F \cdot x_{4} \\
& \quad+.22 \cdot 9.8 \cdot 352+0-m g \cdot 103-.12 \cdot 9.8 .58 \\
& 0=.76+0-1.01 \mathrm{~m}-.68 \\
& 0=.08-1.01 \mathrm{~m} \\
& 1.01 \mathrm{~m}=.08 \\
& m=.079 \mathrm{~kg}
\end{aligned}
$$

Note: Don't forget to add in the masses of the hangers

No! If we are careful about where we set our torque

