Orbit and Constant Velocity Problem

$$
V_{T}=\frac{2 \pi r}{T}
$$

A satellite is in orbit 500 km above the surface of the Earth. What is its velocity?

$$
\begin{aligned}
& m_{1}=\text { mass earth }=5.98 \times 10^{24} \mathrm{~kg} \quad \begin{array}{l}
m_{2}=\text { mass of } \\
\text { satellite }
\end{array} \\
& F=\frac{G m_{1} m_{2}}{r^{2}} \\
& r=r_{e}+r_{0}=6.38 \times 10^{6}+5 \times 10^{5}=6.88 \times 10^{6} \mathrm{~m}
\end{aligned}
$$

What is happening?
\rightarrow Centripetal acceleration

$$
F_{c}=\frac{m v^{2}}{r} \quad F=\frac{G m_{1} m_{2}}{r^{2}}
$$

mof

$$
\rightarrow \frac{m_{1} v^{2}}{r}=\frac{G m_{1} p_{1}}{r_{2}}
$$

object

$$
\begin{aligned}
& V^{2}=\frac{G m_{1}}{r} \\
& V=\frac{G m_{1}}{r}=\sqrt{\frac{6.67 \times 10^{-11} \cdot 5.98 \times 10^{24}}{\left(6.88 .10^{6}\right)}}=7610 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

This is a good thing - imagine velocity depending on the mass of the object orbiting

- Space walks would be a big problem

