Work calculations

9:54 AM

Thursday, October 31, 2013

A 10 kg mass moves 5 m along a surface with a coefficient of friction of .2. What is the net work if the object is pulled with a force of 40 n at 30 degrees?

Fg = mg =
$$(0.9.8 = 98N)$$

Fp = $40N$

TFP

FPY = FPY = FP Sin Θ = $40 \sin 30 = 20N$

= FPY

FOX = FP COS Θ = $40 \cos 30 = 34.6N$

FN = FQ - FPY = $98 - 20 = 78N$

= FF = $MFN = .2.78 = 15.6N$

Writtion

Work kinetic energy theorem Wret = Fruet
$$\cdot$$
 X \cdot COSO

Fruet X = Fpx - Ff = 19 \cdot 5 \cdot COSO

= 34.6-15.6 = 19.5

Example = 19.5

A car with a mass of 1000 kg starts at 10 m/s and accelerates to 20 m/s in 50m. How much work is done?

What is the force required?

$$W = \Delta KE$$

$$W = KEF - KEi$$

$$= \frac{1}{2}mV_{5}^{2} - \frac{1}{2}mV_{i}^{2}$$

$$= \frac{1}{2}m(V_{5}^{2} - V_{i}^{2})$$

$$= \frac{1}{2}(V_{5}^{2} - V_{i}^{2})$$

$$= \frac{1}{2}(V_{5}^{2} - V_{i}^{2})$$

$$= \frac{1}{2}(V_{5}^{2} - V_{i}^{2})$$

$$= \frac{1}{2}(V_{5}^{2} - V_{5}^{2})$$

$$= \frac{1}{2}(V_{5$$

$$KE = \frac{1}{2}mv^{2}$$
 $W = F \cdot x$
 $F = W/x$
 $= 150,000/50$
 $= 3,000N$

upush=Foushox.cos (

= Fpx· X

=1331

waric= Faric - X. cos O

1.8F-=

Wnet = Woush + whic = 173-78=951

=15.6.5.-1

= 34.6.5

=40.5. 6530

AP Physics 1 Page 1