A 10 kg mass moves 5 m along a surface with a coefficient of friction of .2 . What is the net work if the object is pulled with a force of 40 n at 30 degrees?

Wpush:

$$
F g=m g=10.9 .8=98 \mathrm{~N}
$$

$$
F_{P}=40 \mathrm{~N}
$$

$$
F_{p y}=F_{p} \sin \theta=40 \sin 30=20 \mathrm{~N}
$$

$$
F p x=F p \cos \theta=40 \cos 30=34.6 \mathrm{~N}
$$

$$
\begin{aligned}
\text { push } & =F_{\text {push }} \cdot x \cdot \cos \theta \\
& =40 \cdot 5 \cdot \cos 30 \\
& =F_{p x} x \cdot x
\end{aligned}
$$

$$
\begin{aligned}
F_{N}=F_{g}-F_{p y}=98-20=78 \mathrm{~N} & =34.6 .5 \\
& =173.1
\end{aligned}
$$

$$
F_{f}=\mu F_{N}=.2 .78=15.6 \mathrm{eN}
$$

Friction

$$
\begin{array}{rlrl}
& \begin{aligned}
\omega_{\text {net }} & =F \text { net } \cdot x \cdot \cos \theta \\
\text { Fret } x & =F p x-F f \\
& =19 \cdot 5 \cdot \cos O \\
& =34.6-15.6
\end{aligned} & =19.5 \\
& =19 \mathrm{~N} & & =955
\end{array}
$$

$$
\begin{aligned}
\text { wfric } & =F_{\text {fric }} \cdot x \cdot \cos \theta \\
& =18.6 \cdot 5 \cdot-1 \\
& =-78 \mathrm{~J}
\end{aligned}
$$

Example $=19 \mathrm{~N}$
A car with a mass of 1000 kg starts at $10 \mathrm{~m} / \mathrm{s}$ and accelerates to $20 \mathrm{~m} / \mathrm{s}$ in 50 m . How much work is

$$
\begin{aligned}
W_{\text {net }} & =W_{\text {push }}+\text { Wrac }^{2} \\
& =1+3-78=95 j
\end{aligned}
$$

What is the force required?

$$
\begin{aligned}
& =17 \text { push + wrric } \\
& =13-78=95 \mathrm{l}
\end{aligned}
$$

$$
\begin{aligned}
& W=\triangle K E \\
& W=K E_{f}-K E_{i} \\
& =\frac{1}{2} m v_{f}^{2}-\frac{1}{2} m v_{i}{ }^{2} \\
& \\
& =\frac{1}{2} m\left(v_{f}^{2}-v_{i}{ }^{2}\right) \\
& \\
& =\frac{1}{2} \cdot 1000 \cdot\left(20^{2}-10^{2}\right) \\
& =500(400-100) \\
& =500 \cdot 300 \\
& \\
& =150,000)
\end{aligned}
$$

$$
\begin{aligned}
K E= & \frac{1}{2} m W^{2} \\
W & =F \cdot x \\
F & =W / x \\
& =150,000 / 50 \\
& =3,000 \mathrm{~N}
\end{aligned}
$$

